Population coding of reward magnitude in the orbitofrontal cortex of the rat.
نویسندگان
چکیده
Although single-cell coding of reward-related information in the orbitofrontal cortex (OFC) has been characterized to some extent, much less is known about the coding properties of orbitofrontal ensembles. We examined population coding of reward magnitude by performing ensemble recordings in rat OFC while animals learned an olfactory discrimination task in which various reinforcers were associated with predictive odor stimuli. Ensemble activity was found to represent information about reward magnitude during several trial phases, namely when animals moved to the reward site, anticipated reward during an immobile period, and received it. During the anticipation phase, Bayesian and template-matching reconstruction algorithms decoded reward size correctly from the population activity significantly above chance level (highest value of 43 and 48%, respectively; chance level, 33.3%), whereas decoding performance for the reward delivery phase was 76 and 79%, respectively. In the anticipation phase, the decoding score was only weakly dependent on the size of the neuronal group participating in reconstruction, consistent with a redundant, distributed representation of reward information. In contrast, decoding was specific for temporal segments within the structure of a trial. Decoding performance steeply increased across the first few trials for every rewarded odor, an effect that could not be explained by a nonspecific drift in response strength across trials. Finally, when population responses to a negative reinforcer (quinine) were compared with sucrose reinforcement, coding in the delivery phase appeared to be related to reward quality, and thus was not based on ingested liquid volume.
منابع مشابه
Neural coding of reward magnitude in the orbitofrontal cortex of the rat during a five-odor olfactory discrimination task.
The orbitofrontal cortex (OBFc) has been suggested to code the motivational value of environmental stimuli and to use this information for the flexible guidance of goal-directed behavior. To examine whether information regarding reward prediction is quantitatively represented in the rat OBFc, neural activity was recorded during an olfactory discrimination "go"/"no-go" task in which five differe...
متن کاملCoding of Reward Risk by Orbitofrontal Neurons Is Mostly Distinct from Coding of Reward Value
Risky decision-making is altered in humans and animals with damage to the orbitofrontal cortex. However, the cellular function of the intact orbitofrontal cortex in processing information relevant for risky decisions is unknown. We recorded responses of single orbitofrontal neurons while monkeys viewed visual cues representing the key decision parameters, reward risk and value. Risk was defined...
متن کاملSingle-cell and population coding of expected reward probability in the orbitofrontal cortex of the rat.
The orbitofrontal cortex (OFC) has been implicated in decision-making under uncertainty, but it is unknown how information about the probability or uncertainty of future reward is coded by single orbitofrontal neurons and ensembles. We recorded neuronal ensembles in rat OFC during an olfactory discrimination task in which different odor stimuli predicted different reward probabilities. Single-u...
متن کاملPopulation coding and neural rhythmicity in the orbitofrontal cortex.
The orbitofrontal cortex has been implicated in the prediction of valuable outcomes based on environmental stimuli. However, it remains unknown how it represents outcome-predictive information at the population level, and how it provides temporal structure to such representations. Here, we pay attention especially to the population coding of probabilistic reward, and to the importance of orbito...
متن کاملReward Value Coding Distinct From Risk Attitude-Related Uncertainty Coding in Human Reward Systems
When deciding between different options, individuals are guided by the expected (mean) value of the different outcomes and by the associated degrees of uncertainty. We used functional magnetic resonance imaging to identify brain activations coding the key decision parameters of expected value (magnitude and probability) separately from uncertainty (statistical variance) of monetary rewards. Par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 34 شماره
صفحات -
تاریخ انتشار 2008